最小生成树

最小生成树其实是最小权重生成树的简称。一个有n个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有n个结点,并且有保持图连通的最少的边。最小生成树可以用kruskal(克鲁斯卡尔)算法或Prim(普里姆)算法求出。最小生成树性质:设G=(V,E)是一个连通网络,U是顶点集V的一个非空真子集。根据树的定义,则T中必有一条从红点u到蓝点v的路径P,且P上必有一条紫边(u',v')连接红点集和蓝点集,否则u和v不连通。当一条边(u,v)加入T时,必须保证T∪(u,v)仍是MST的子集,我们将这样的边称为T的安全边。

应用

生成树和最小生成树有许多重要的应用。

例如:要在n个城市之间铺设光缆,主要目标是要使这 n 个城市的任意两个之间都可以通信,但铺设光缆的费用很高,且各个城市之间铺设光缆的费用不同,因此另一个目标是要使铺设光缆的总费用最低。这就需要找到带权的最小生成树。

性质

说明

最小生成树性质:设是一个连通网络,U是顶点集V的一个非空真子集。若(u,v)是G中一条“一个端点在U中(例如:),另一个端点不在U中的边(例如:),且(u,v)具有最小权值,则一定存在G的一棵最小生成树包括此边(u,v)。

证明

为方便说明,先作以下约定:

①将集合U中的顶点看作是红色顶点,②而V-U中的顶点看作是蓝色顶点,③连接红点和蓝点的边看作是紫色边,④权最小的紫边称为轻边(即权重最"轻"的边)。于是,MST性质中所述的边(u,v)就可简称为轻边。

用反证法证明MST性质:

假设G中任何一棵MST都不含轻边(u,v)。则若T为G的任意一棵MST,那么它不含此轻边。

根据树的定义,则T中必有一条从红点u到蓝点v的路径P,且P上必有一条紫边(u',v')连接红点集和蓝点集,否则u和v不连通。当把轻边(u,v)加入树T时,该轻边和P必构成了一个回路。删去紫边(u',v')后回路亦消除,由此可得另一生成树T'。

T'和T的差别仅在于T'用轻边(u,v)取代了T中权重可能更大的紫边(u',v')。因为,所以

即T'是一棵比T更优的MST,所以T不是G的MST,这与假设矛盾。

所以,MST性质成立。

算法描述

求MST的一般算法可描述为:针对图G,从空树T开始,往集合T中逐条选择并加入条安全边(u,v),最终生成一棵含条边的MST。

当一条边(u,v)加入T时,必须保证仍是MST的子集,我们将这样的边称为T的安全边。

伪代码

GenerieMST(G){//求G的某棵MST

T〈-¢; //T初始为空,是指顶点集和边集均空

while T未形成G的生成树 do{

找出T的一条安全边(u,v);//即T∪{(u,v)}仍为MST的子集

T=T∪{(u,v)}; //加入安全边,扩充T

}

return T; //T为生成树且是G的一棵MST

}

注意:

下面给出的两种求MST的算法均是对上述的一般算法的求精,两算法的区别仅在于求安全边的方法不同。

为简单起见,下面用序号0,1,…,来表示顶点集,即是:

G中边上的权解释为长度,并设。

求最小生成树的具体算法(pascal):

Prim算法

procedure prim(v0:integer);

var

lowcost,closest:array[1..maxn] of integer;

i,j,k,min:integer;

begin

for i:=1 to n do begin

lowcost[i]:=cost[v0,i];

closest[i]:=v0;

end;

for i:=1 to n-1 do begin

{寻找离生成树最近的未加入顶点 k}

min:=maxlongint;

for j:=1 to n do

if (lowcost[j]\u003c\u003e0) then Begin

min:=lowcost[j];

k:=j;

end;

lowcost[k]:=0; {将顶点k 加入生成树}

{生成树中增加一条新的边 k 到 closest[k]}

{修正各点的 lowcost 和 closest 值}

for j:=1 to n do

if cost[k,j]

lowcost[j]:=cost[k,j];

closest[j]:=k;

end;

end;

end;

Kruskal算法

按权值递增顺序删去图中的边,若不形成回路则将此边加入最小生成树。

函数 find(v:integer):integer; {返回顶点 v 所在的集合}

var i:integer;

begin

i:=1;

while (i\u003c=n) and (not v in vset) do inc(i);

if i\u003c=n then find:=i else find:=0;

end;

procedure kruskal;

var

tot,i,j:integer;

begin

for i:=1 to n do vset:=i;{初始化定义 n 个集合,第 I个集合包含一个元素 I}

p:=n-1; q:=1; tot:=0; {p 为尚待加入的边数,q 为边集指针}

sort;

{对所有边按权值递增排序,存于 e中,e.v1 与 e.v2 为边 I 所连接的两个顶点的

序号,e.len 为第 I条边的长度}

while p\u003e0 do begin

i:=find(e[q].v1);j:=find(e[q].v2);

if i\u003c\u003ej then begin

inc(tot,e[q].len);

vset:=vset+vset[j];vset[j]:=[];

dec(p);

end;

inc(q);

end;

writeln(TOT);

end;

C语言代码

kruskal

program didi;

var

a:array[0..100000] of record

s,t,len:longint;

end;

fa,r:array[0..10000] of longint;

n,i,j,x,y,z:longint;

tot,ans:longint;

count,xx:longint;

procedure quick(l,r:longint);

var

i,j,x,y,t:longint;

begin

i:=l;j:=r;

x:=a[(l+r) div 2].len;

repeat

while x\u003ea[i].len do inc(i);

while xdec(j);

if i\u003c=j then

begin

y:=a[i].len;a[i].len:=a[j].len;a[j].len:=y;

y:=a[i].s;a[i].s:=a[j].s;a[j].s:=y;

y:=a[i].t;a[i].t:=a[j].t;a[j].t:=y;

inc(i);dec(j);

end;

until i\u003ej;

if i

if l

end;

函数 find(x:longint):longint;

begin

if fa[x]\u003c\u003ex then fa[x]:=find(fa[x]);

find:=fa[x];

end;

procedure union(x,y:longint);{启发式合并}

var

t:longint;

begin

x:=find(x);

y:=find(y);

if r[x]\u003er[y] then

begin

t:=x;x:=y;y:=t;

end;

if r[x]=r[y] then inc(r[x]);

fa[x]:=y;

end;

begin

readln(xx,n);

for i:=1 to xx do fa[i]:=i;

for i:=1 to n do

begin

read(x,y,z);

inc(tot);

a[tot].s:=x;

a[tot].t:=y;

a[tot].len:=z;

end;

quick(1,tot);{将边排序}

ans:=0;

count:=0;

i:=0;

while count\u003c=x-1 do{count记录加边的总数}

begin

inc(i);

with a[i] do

if find(s)

begin

union(s,t);

ans:=ans+len;

inc(count);

end;

end;

write(ans);

end.

Prim

var

m,n:set of 1..100;

s,t,min,x,y,i,j,k,l,sum,p,ii:longint;

a:array[1..100,1..100]of longint;

begin

readln(p);

for ii:=1 to p do

begin

k:=0; sum:=0;

fillchar(a,sizeof(a),255);

readln(x);

m:=;

n:=[2..x];

for i:=1 to x do

begin

for j:=1 to x do

begin

read(a[i,j]);

if a[i,j]=0

then a[i,j]:=maxlongint;

end;

readln;

end;

for l:=1 to x-1 do

begin

min:=maxlongint;

for i:=1 to x do

if i in m

then begin

for j:=1 to x do

begin

if (a[i,j]

then begin

min:=a[i,j];

s:=i;

t:=j;

end;

end;

end;

sum:=sum+min;

m:=m+[t];

n:=n-[t];

inc(k);

end;

writeln(sum);

end;

end.

参考资料

友情链接